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We establish, from extensive numerical experiments, that the two dimensional stochastic fire-diffuse-fire
model belongs to the directed percolation universality class. This model is an idealized model of intracellular
calcium release that retains both the discrete nature of calcium stores and the stochastic nature of release. It is
formed from an array of noisy threshold elements that are coupled only by a diffusing signal. The model
supports spontaneous release events that can merge to form spreading circular and spiral waves of activity. The
critical level of noise required for the system to exhibit a nonequilibrium phase transition between propagating
and nonpropagating waves is obtained by an examination of thelocal slopedstd of the survival probability
Pstd~expf−dstdg for a wave to propagate for a timet.
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Ca2+ waves provide a highly versatile mechanism for in-
tracellular and intercellular signaling[1]. Cellular calcium
signals generally do not occur uniformly throughout a cell
but are initiated at specific sites and spread in the form of
saltatory waves[2]. The fluorescent imaging of localized
Ca2+ release events has now made it clear that Ca2+ release
dynamics is a stochastic process that occurs at spatially dis-
crete sites that are clusters of IP3 receptors in the endoplas-
mic reticulum or ryanodine receptors in the sarcoplasmic
reticulum [3,4]. In this paper we describe the two-
dimensional stochastic fire-diffuse-fire(FDF) model of Ca2+

release and use extensive numerical simulations to highlight
the interesting statistical properties for the waves generated
by the model. One of the main advantages of this model is
that it is both biophysically realistic and computationally in-
expensive. A threshold process is used to mimic the nonlin-
ear properties of Ca2+ release channels. Moreover, release
events have a simple on-off temporal structure and release
sites are embedded at a discrete set of points within the cell
model. The stochastic nature of release events is incorpo-
rated via the introduction of a simple probabilistic rule for
the release of calcium from internal stores. Using numerical
simulations we are able to identify a critical level of noise
defining a nonequilibrium phase transition and show that the
model belongs to the directed-percolation(DP) universality
class(in two dimensions).

A recent review of the main features of the stochastic FDF
model can be found in[5], where its historical development
is traced from the original FDF model of Keizeret al. [6–8].
This Brief Report not only builds upon this body of work,
but is complementary to that of Falckeet al. [9,10], which
focuses on more biophysically detailed models of the sto-
chastic release of calcium from internal stores.

In the two-dimensional stochastic FDF model(see also

[5,11]), it is assumed that release times occur at multiples of
the duration,t, of a release event(which is small relative to
other time scales in the model). Let usr ,td denote the con-
centration of Ca2+ at a pointr PR2 at time tPR+. Then the
dynamics forpt, t, sp+1dt, pPZ, is determined in terms
of the release function anspd and initial dataupsr d=usr ,ptd
as

usr ,td =
s

t
o
nPG

anspdGsr − r n,t − ptd + sG ^ updsr ,td, s1d

where

Gsr ,td =
1

4pDt
expS−

t

td
DexpS−

r2

4Dt
D s2d

andr = ur u. The decay timetd in Eq. (2) is associated with the
action of linear SERCA pumps that resequester the Ca2+

back into the stores. The transport of Ca2+ in the model is
assumed to be the result of isotropic Ca2+ diffusion between
Ca2+ release sites with a diffusion coefficientD. Although, in
real cells, calcium is heavily buffered, recent work by Strier
et al. [12] suggests that working with an effective diffusion
constant is reasonable(even for slow buffers) if the spacing
between release sites is not too large. The vectorsr n in Eq.
(1) determine the locations of the(point) Ca2+ release sites
and G is a discrete set that indexes these release sites. The
pth release event at thenth site is a binary process, where the
anspdP h0,1j act as coefficients in the expansion of the so-
lution over a set of functionsGsr −r n,t−ptd. The strength of
the release event is given bys. The second term on the
right-hand side in Eq.(1) represents a spatial convolution of
the propagatorGsr ,t−ptd with initial dataupsr d:

sG ^ updsr ,td =E
R2

Gsr − r 8,t − ptdupsr 8ddr 8. s3d

Hence, the dynamics is naturally separated into a part that
keeps track of release from internal stores and another that
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describes the spread of Ca2+ by diffusion. Note that Eq.(1)
only has to be sampled in discrete time to fully specify cell
behavior since theanspd remain unchanged over the duration
of release.

The stochastic nature of localized Ca2+ release is incorpo-
rated within the model via the introduction of a simple
probabilistic rule. It is assumed that the probability of a re-
lease event(i.e., the probability thatanspd=1) is given in
terms of the probability thatusr n,ptd is bigger than some
thresholduc—i.e.,

P„anspd = 1… = f„unspd − uc… p
m=1

minsR,pd

f1 − f„unsp − md − uc…g,

s4d

for some functionfsud. Hereunspd;usr n,ptd andRPZ. The
first term on the right in Eq.(4) is the probability that
unspd.uc while the second term ensures that release events
are unlikely to be closer thanRt, which we take to be the
refractory time scale. A natural choice forfsud is

fsud = H 1

1 + e−bu −
1

1 + ebuc
Js1 + e−bucd, s5d

whereb.0, so that the probability of release is zero when
u=0 and tends to one asu→`. Importantly, the level of
noise can be linked to the numberN of calcium release chan-
nels per cluster. In[5] it is shown that a sigmoidal form for
the probability of release emerges from the mathematical
analysis of a more detailed stochastic receptor cluster model,
with steepness of the sigmoid controlled byN. Hence, in this
heuristic model we use the parameterb to mimic finite-size
effects, such that with decreasingb the system becomes
more noisy(as expected with decreasingN). Thus, the sto-
chastic FDF model is defined by Eq.(1) with the anspd
treated as random variables such thatPsa=1d is given by(4).

Release events are easily calculated since Ca2+ concentra-
tion at the release sites are defined as a sum of two terms that
are both amenable to fast numerical evaluation. In particular
upsr d may be written in terms of thebasis functions Gsr

−r n,ptd. Since these are fixed for all time, they need only be
computed once. The convolution in Eq.(1) may be per-
formed efficiently using fast Fourier transform(FFT) tech-
niques. Once again the FFT ofGsr ,td need only be com-
puted once, so that it is only necessary to successively
construct the FFT ofupsr d for p=0,1,2, . . . .. Thestatistical
properties of dynamical behavior in the one-dimensional sto-
chastic FDF model have previously been studied in[11].
Note that the first evidence for directed percolation in a one-
dimensional model of stochastic calcium release is due to
Bär et al. [13]. In what follows we will focus on the statis-
tical properties of spreading waves that arise naturally intwo
dimensions, more realistic of real cells.

Sufficiently large threshold noise in the stochastic FDF
model is able to terminate a wave prematurely, suggesting
the interesting possibility of a critical noise that defines a
border between waves whichsurvive or eventually goex-
tinct. In the latter case the system becomes trapped in a com-
pletely inactive or absorbing state. This is typical of models
which exhibit a nonequilibrium phase transition belonging to
the DP universality class. Precisely at the critical point the
survival probabilityPstd that a wave initiated from a single
site has not aborted aftert time steps is expected to scale
asymptotically ast−d, whered is a universal scaling param-
eter. The current estimate for the critical exponent of DP in
two dimensions isd=0.451 [14]. The analysis of the DP
universality class is highly nontrivial and it has not been
possible to obtain critical exponents for models in this class
analytically.

We shall treat the effective noise parameterb as the one
controlling the DP phase transition and denote the critical
value of b at the phase transition between propagating and
abortive waves bybc. To obtain a good estimate of the criti-
cal exponentd we construct the effective exponent:

dstd =
lnfPsrtd/Pstdg

ln r
, s6d

where lnr is the distance used for estimating the slope of
Pstd. For bÞbc, dstd will deviate from a straight line(in the

FIG. 1. (Color online) A plot of −dstd as a function oft−1 for
three different level of threshold noise,b=0.23 (upper curve), b
=0.2 (middle curve), and b=0.18 (lower curve). System param-
eters:D=30 mm2 s−1, release site spacingd=2 mm, t=10 ms,td

=200 ms,R=50, s=1, anduc=0.1.

FIG. 2. The distribution of survival times for the stochastic FDF
model at the critical noise defining the transition between propagat-
ing and abortive waves. For larget, Pstd scales ast−0.45, indicating
that this model belongs to the two-dimensional DP universality
class.
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large t limit ) so that plots ofdstd for various choices ofb
may be used to predictbc. An estimate ofd is obtained by
extrapolating the behavior ofdstd to t−1=0. In Fig. 1 we plot
dstd for variousb, showing that for our choice of systems
parametersbc,0.2, with the release sites placed on a square
lattice of periodd. In Fig. 2 we plot the corresponding dis-
tribution of survival times for the activation process started
from a single active site placed in the middle of the left edge
of a square lattice. Percolation has been checked over sites
from one (the left) edge to the opposite(right) edge of the
square lattice. Using our value ofbc we find d,0.45, sug-
gesting that the stochastic FDF model in two dimensions
does indeed belong to the DP universality class.

To date, the critical behavior of DP, especially the values
of the critical exponents, has not yet been confirmed experi-
mentally. It has been estimated in various dimensions only
thanks to extensive numerical simulations, transfer matrix
techniques, series expansions, and field-theoretic calculations
[15]. The analysis of the computationally inexpensive two-
dimensional model of calcium release that we have presented
here lends further support to the idea that the experimental
realization of DP may be found in cell biology and, specifi-

cally, intracellular calcium waves[15]. Moreover, simula-
tions of heterogeneous versions of the model, some of which
are presented in[5,16], show that the qualitative behavior of
the stochastic FDF model is robust to perturbations in both
the spatial distribution of release sites(away from a regular
lattice) and the spatial distribution of the threshold(away
from the choice of a fixed threshold at every release site).
Since moderate changes in, say, externalfCa2+g can switch a
cell from a saltatory wave-propagating regime to a wave-
blocking one[2] further analysis of the stochastic FDF cell
model will be useful in determining the critical levels of
extracellular fCa2+g and values of other controllable vari-
ables, necessary for an experiment to exhibit the types of
abortive waves that would signal the onset of a DP phase
transition. Since directed percolation is the testing ground for
many ideas about nonequilibrium phase transitions, this is a
potentially explosive subject area and may encourage a fur-
ther cross fertilization of ideas between the fields of compu-
tational cell biology and nonequilibrium statistical physics.
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